Synthesis and evaluation of L-arabinose-based cationic glycolipids as effective vectors for pDNA and siRNA in vitro
نویسندگان
چکیده
Glycolipids might become a new type of promising non-viral gene delivery systems because of their low cytotoxicity, structural diversity, controllable aqua- and lipo-solubility, appropriate density and distribution of positive charges, high transfer efficiency and potential targeting function. In this study, four kinds of L-arabinose-based cationic glycolipids (Ara-DiC12MA, Ara-DiC14MA, Ara-DiC16MA and Ara-DiC18MA) containing quaternary ammonium as hydrophilic headgroup and two alkane chains as hydrophobic domain were synthesized and characterized. They were observed to have strong affinities for plasmid DNA (pDNA) and siRNA, the pDNA can be completely condensed at N/P ratio less than 2, and the siRNA can be completely retarded at N/P ratio less than 3. The dynamic light scattering (DLS) experiment and atomic force microscopy (AFM) experiment demonstrated that cationic lipids and their lipoplexes possessed suitable particle sizes with near-spherical shape and proper ζ-potentials for cell transfection. The Ara-DiC16MA liposome was found to have good transfection efficacy in HEK293, PC-3 and Mat cells compared with other three kinds of liposomes, and also maintain low cytotoxicity and better uptake capability in vitro. Furthermore, the gene silencing assay showed that Ara-DiC14MA and Ara-DiC16MA liposomes have demonstrated effective delivery and higher gene knockdown activity (>80%) in the above mentioned cells than Lipofectamine 2000. These results indicated Ara-DiC16MA can be developed for efficient and low toxic gene delivery.
منابع مشابه
Formulation of a therapeutic cationic liposome-siRNA complex for development to fight osteosarcoma
Introdution: Cationic liposomes have been presented for gene delivery as an alternative vector instead of viral vectors. A major challenge associated with siRNA delivery is the instability of liposomes, which is still a serious problem. The aim of this study was to provide an appropriate formulation to overcome this instability. Methods: In the present study (Scientific-Fundamental, Experiment...
متن کاملRecombinant adeno-associated virus-, polyethylenimine/plasmid- and lipofectamine/carboxyfluorescein-labeled small interfering RNA-based transfection in retinal pigment epithelial cells with ultrasound and/or SonoVue.
The present study was conducted to investigate the efficacy and safety of ultrasound (US)‑mediated transfection of the type 2 recombinant adeno‑associated virus (AAV) vectors encoding the enhanced green fluorescent protein (EGFP) gene (rAAV), polyethylenimine (PEI)/plasmid EGFP‑N1 (pDNA) or lipofectamine (L)/carboxyfluorescein (FAM)‑labeled small interfering RNA (siRNA) in the human ARPE‑19 ret...
متن کاملCationic Nanoparticles Assembled from Natural-Based Steroid Lipid for Improved Intracellular Transport of siRNA and pDNA
Developing new functional biomaterials from biocompatible natural-based resources for gene/drug delivery has attracted increasing attention in recent years. In this work, we prepared a series of cationic nanoparticles (Diosarg-DOPE NPs) by assembly of a natural steroid diosgenin-based cationic lipid (Diosarg) with commercially-available helper lipid 1,2-dioleoyl-sn-glycero-3-phosphorethanolamin...
متن کاملSynthesis and preliminary investigations of the siRNA delivery potential of novel, single-chain rigid cationic carotenoid lipids.
The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the sing...
متن کاملNovel Cationic Dye Based on Naphthalimide: Part 1: Synthesis, Characterization and Evaluation of Biology Efficacy as Antimicrobial Agent
In this paper, synthesis and antimicrobial properties of cationic dye were investigated. 4-acetylamino-N-2-aminomethylpyridine-1,8-naphthalimide was reacted with 1-bromobutane as the alkylating agent and a cationic dye was obtained. The final product was purified by column chromatography method. The chemical structure of the novel cationic dye and its intermediates was chracterisized by using F...
متن کامل